
Enhancing RDAP filtering
capabilities!

!

Mario Loffredo, Maurizio Martinelli!
IIT-CNR/Registro.it!

7th ROW - Vancouver, May 17th, 2018!

Contents!
n  REST services !

n  RDAP status!
!
n  .it proposals to IETF RegExt WG!
!
n  Reasons for filtering!
!
n  “filter” parameter!

n  Short demo!
!
n  Considerations!

n  Future developments!
!
n  Q & A!

REST services!

n  REST services SHOULD offer capabilities for efficient
management of result sets:!
•  filtering!
•  sorting!
•  paging!
•  subsetting!

n  Reasons:!
•  minimizing the bandwidth usage!
•  speeding up the response time!
•  improving the precision of the queries and, consequently, obtain

more reliable results!
•  decreasing CPU time and memory spent on both server and client !

RDAP status!

n  RDAP provides limited search capabilities (RFC 7482)!
•  the search condition consists of a single predicate!
!

n  A search query can potentially generate a large result set!

n  The result set:!
•  must be scrolled when looking for the desired data (best case scenario)!
•  can be truncated according to the server limits (worst case scenario)!

n  RDAP lacks of result filtering, sorting, paging, and subsetting
capabilities:!
•  you cannot restrict the result set by adding search conditions!
•  you cannot specify possible sort criteria to have the most relevant objects

at the beginning of the result set !
•  you cannot scroll the result set by subsequent queries when the result set

is truncated!
•  you cannot request for a partial response!

!

.it proposals to IETF RegExt WG!

n  Two I-Ds about managing large RDAP responses:!
!

•  I-D.loffredo-regext-rdap-sorting-and-paging!
Loffredo, M., Martinelli, M., and S. Hollenbeck, "Registration Data Access
Protocol (RDAP) Query Parameters for Result Sorting and Paging", draft-
loffredo-regext-rdap-sorting-and-paging-03, March 2018 !

!
•  I-D.loffredo-regext-rdap-partial-response!

Loffredo, M. and M. Martinelli, "Registration Data Access Protocol (RDAP)
Partial Response", draft-loffredo-regext-rdap-partial-response-01, March
2018!
!

n  One I-D about reverse search:!
!

•  I-D.loffredo-regext-rdap-reverse-search!
Loffredo, M. and M. Martinelli, "Registration Data Access Protocol (RDAP)
Reverse Search", draft-loffredo-regext-rdap-reverse-search-01, March
2018!

!

Reasons for filtering!

n  The extraction of the desired information from a RDAP
response could be time and resource consuming!
•  even if sorting, paging and subsetting would be implemented!

!
n  Users can obtain exactly what they are searching for!
!
n  If pagination is not implemented, filtering can avoid the loss

of relevant results due to truncation!
!
n  Users might be interested in performing searches that are

currently unsupported:!
•  a registrar might search its own domains for a certain status or for a

specific event in a range of dates!
•  a law authority might search all the contacts for a specific email!

“filter” parameter - principles!

n  Parameter:!
•  Name: filter!
•  Value: a search condition!

!
n  How to represent the value?!

•  traditionally, a search condition includes a set of predicates
combined by logical operators AND, OR and NOT!

•  a predicate contains three components:!
•  a property name;!
•  an allowed operator for the property;!
•  a value (or a list of values) whose type is allowed for the property!
!

n  The value can be represented as a JSON expression!
•  JSON can represent search conditions whose complexity ranges

from very simple to extremely complicated!
•  JSON is both human-readable and machine-processable!

!

“filter” parameter - Predicate
properties!

n  The properties already defined in I-D.loffredo-regext-rdap-sorting-and-
paging can be used in a predicate:!

!
•  Object common properties:!

•  registrationDate!
•  reregistrationDate!
•  lastChangedDate!
•  expirationDate!
•  deletionDate!
•  reinstantiationDate!
•  transferDate!
•  lockedDate!
•  unlockedDate!
!

•  Object specific properties:!
•  Domain: ldhName!
•  Nameserver: ldhName, ipV4, ipV6.!
•  Entity: fn, handle, org, email, tel, country, countryName, locality!

n  “status” and “roles” should be also considered!

n  “name” vs. “ldhName“, “unicodeName”?!

“filter” parameter - Predicate values!

n  Basic type:!
•  string!
•  number!
•  boolean!
•  datetime !

•  RFC3339 full-date and date-time formats are considered!

!
n  Array of a basic type!
!

“filter” parameter - Predicate
operators!

n  Operators for properties whose type is a basic type:!

•  no values: isnull, isnotnull!
•  one value: eq, ne, le, ge, lt, gt!
•  array of two values: between!
•  array of N values: in!
!
•  Specific operators on strings (e.g. “contains”, “starts with”) can be implemented using

eq/ne operators and the wildcard!
!
n  Operators for properties (such as status) whose type is an array:!

•  any: the property must contain at least one of the values in the array!
•  all: the property must contain all the values in the array, but it could also contain

additional values!
•  exactly: the property must contain all the values in the array and cannot contain

additional values!
!

n  Operators for predicates:!

•  one predicate: not!
•  N predicates: and, or!

“filter” parameter - The value in
JSON !

n  A simple predicate consists of a JSON array:!
•  the number of items ranges from 2 (operators without value) to 3 (operators

with value):!
•  [“lastChangedDate”, “isnull”]!
•  [“registrationDate”, “gt”, “2018-01-20”]!
•  [“registrationDate”, “between”, [“2018-01-20”,“2018-01-21”]]!
•  [“country”, “in”, [“it”,“ch”,“de”,“fr”]]!

•  deserialization of a JSON array into an object:!
•  it is not a standard capability of JSON libraries!
•  it can be implemented through a few lines of code!
•  a JSON array is more compact than a JSON object!

!
n  A complex condition consists of a JSON object, including a single

member:!
•  the logical operator is the member name !
•  the sub-predicates (one or more) are the member values!

•  {"or":[["registrationDate","ge","2018-01-20"],["expirationDate","le","2019-01-20"]]}!
•  {"not":{"or":[["registrationDate","ge","2018-01-20"],["expirationDate","le","2019-01-20"]]}}!

“filter” parameter - The value in JCR!

@{root} $expression = {!
 (!
 $or_expression |!
 $and_expression |!
 $not_expression |!
 $predicates_array |!
 $predicate!
)!
}!
!
$or_expression = {!
"or" : [$expression, $expression +]!
}!
!
$and_expression = {!
"and" : [$expression, $expression +]!
}!
!
$not_expression = {!
"not" : $expression!
}!
!
$predicates_array = [$predicate +]!
!

$predicate = [!
 /^[A-Za-z]+$/,!
 (!
 ("isnull"|"isnotnull") |!
 (("eq"|"ne"), $basic_value) |!
 (("le"|"lt"|"gt"|"ge"), $not_pattern_value) |!
 ("between", [$not_pattern_value, $not_pattern_value]) |!
 (("in"|"any"|"all"|"exactly"), $array_value)!
)!
]!
!
$basic_value = @{not} (!
 { // : any * } |!
 [any *] |!
 null!
)!
!
$not_pattern_value = @{not} (!
 { // : any * } |!
 [any *] |!
 null |!
 $pattern_value!
)!
!
$pattern_value = /^[^*]**[^*]*$/!
!
$array_value = [$not_pattern_value +]!

“filter” parameter - To be noted!

n  isnull and isnotnull are used when the predicate represents,
respectively, the absence or the presence of a property in the
expected results!
•  ["transferDate","isnull"]!
!

n  All predicates in an array are implicitly combined by "and"!
•  {"and":[["registrationDate","ge","2018-01-20"],["expirationDate","le","2019-01-20"]]}!
•  [["registrationDate","ge","2018-01-20"],["expirationDate","le","2019-01-20"]]!
!

n  The operator "between" is a shortcut for two predicates combined by
"and" including the same property!
•  {"and":[["registrationDate","ge","2018-01-20"],["registrationDate","le","2019-01-20"]]}!
•  ["registrationDate","between",["2018-01-20","2019-01-20"]]!

!

n  The operator "in" is a shortcut for N predicates combined by "or"
including the same property and the "eq" operator!
•  {"or":[["country","eq","it"],["country","eq","ch"],["country","eq","de"],

["country","eq","fr"]]}!
•  [“country”, “in”, [“it”,“ch”,“de”,“fr”]]!

Short demo!

n  Search domains whose name starts with "w"!
•  https://rdap.pubtest.nic.it/domains?name=w*.it!

n  How many are there ?!
•  https://rdap.pubtest.nic.it/domains?name=w*.it&count=1!

n  Which is the oldest ?!
•  https://rdap.pubtest.nic.it/domains?

name=w*.it&count=1&sortby=registrationDate!
n  What are the domains registered since 2015 ?!

•  https://rdap.pubtest.nic.it/domains?
name=w*.it&count=1&sortby=registrationDate&filter=["registrationDate","gt
","2015-01-01"]!

n  What are the inactive domains registered since 2015 ?!
•  https://rdap.pubtest.nic.it/domains?

name=w*.it&count=1&sortby=registrationDate&filter=[["registrationDate","g
t","2015-01-01"],["status","any",["inactive"]]]!

n  Return only the domain names sorted by LDH name!
•  https://rdap.pubtest.nic.it/domains?

name=w*.it&count=1&sortby=ldhName&filter=[["registrationDate","gt","20
15-01-01"],["status","any",["inactive"]]]&fieldSet=id!

Implementation considerations!
n  The implementation of the filter parameter is technically feasible!

•  operators for filtering results are supported by DBMSs!
•  the impact on RDAP is limited to the search query format!

n  Additional technical considerations:!
•  almost all properties in RDAP are optional !

•  if a predicate includes an unimplemented property, an error should be returned!

•  the filter parameter adds further conditions to the search pattern, to increase
flexibility: !

•  the pattern could be wildcard and search conditions could be described entirely by the filter value!
•  otherwise, the filter parameter might be taken as a new segment path!

–  domains?filter={"or":[[“ldhName","eq","wha*"],[“ldhName","eq","whi*"]]}!
!

•  most suitable properties of the topmost objects have been reported in
predicates!

•  they can be extended with other properties that have not been considered yet!

•  servers could implicitly filter results according to user access levels:!
•  the implicit filter can be represented in the same way as the explicit filter!
•  final filter = {“and”:[<implicit filter>,<explicit filter>]}!

•  some characters in predicate values must be encoded to have URL-safe queries!
•  blank encoded as ‘%20’, ‘+’ encoded as ‘%2B’!

!

Security considerations!

n  Search queries typically require more server resources than
lookup queries!

!
n  This increases the risk of server resource exhaustion and

subsequent denial of service due to abuse!
!
n  Risks can be mitigated by:!

•  limiting the rate of search requests!
•  truncating and paging results!
•  requesting a partial response!
•  enhancing filtering capabilities!

Future developments!
n  RDAP servers can provide different capabilities:!

•  some query paths cannot be available!
•  bootstrapping is not implemented!
•  queries can be extended with additional parameters!
•  authentication and access levels can be implemented!
•  responses can contain proprietary extensions!
!

n  How could RDAP clients face with such a diversity?!
!
n  Proposal:!

•  servers could provide their own policies via a REST API specification
format !
•  OpenAPI, RAML, API Blueprint, JSON API, JSON Schema!

–  https://rdap.pubtest.nic.it/specification!
•  Bootstrapping can help find the desired specification (e.g. draft-ietf-regext-rdap-object-tag-02)!

–  https://rdap.pubtest.nic.it/specification/VRSN!
–  https://rdap.pubtest.nic.it/specification/BRNIC!
–  https://rdap.pubtest.nic.it/specification/GOOGLE!

•  clients could automatically configure themselves!
•  http://petstore.swagger.io/!

!
!

Thanks for your attention!!
Q & A!

