A Primer in Registration Data Access Protocol (RDAP) Performance

Analyzing the RDAP response time of RIRs, TLD registries and ICANN-accredited registrars

Carlos H. Gañán

ROW #10 June 2021

Agenda

- \odot Introduction
- \odot Objectives
- \odot Methodology
- ⊙ Results
- \odot Conclusions

From WHOIS to RDAP

- Why did we need another registration data access protocol?
 - WHOIS suffers from several issues
 - No standardized output format
 - No internationalization
 - No clear method for finding authoritative services
 - No authentication
 - No security
- Around 2011, RIPE NCC & ARIN developed *incompatible* RESTful services for WHOIS
- ◎ In 2015, the IETF standardized RDAP (RFCs 7480, 7481, 7482, 7483, 7484, 7485)
- ◎ In 2017, RySG and RrSG advised to speed up implementation
- From August 2019, ICANN requires that generic top-level domain (gTLD) registries and ICANN-accredited registrars must implement an RDAP service

• Overarching question:

To what extent is RDAP deployment at a stage where we can stop using WHOIS services and move to RDAP?

Goal:

- Investigating currently deployed RDAP services including those from RIR, TLD registries and ICANN-accredited registrars:
 - Measure RDAP performance
 - Performance defined as response time
 - Only using remote measurements

Measurement methodology

- Actively sending RDAP queries every 5 minutes to the RDAP service of RIRs, TLD registries and ICANN-accredited registrars
 - Only **domain** queries
 - **10** vantage points
 - 1 month of measurements (Dec 10, 2020 -- Jan 10, 202)

- For each query, the response time and response data were stored
 - Response time: the time from the start of the request until the last byte is received minus the time to resolve the RDAP server domain name

Aggregated results: response time

- ~8 million RDAP queries:
 - Average query response time was 1.02 seconds
 - RIR's RDAP services were faster than TLD registries which in turn were faster than registrars
 - Presence of extreme outliers:
 - A few queries took several minutes to get responded

RIR

TLD

	Response time (sec)							
	mean	std	min	50%	95%	99%	max	
RIR	0.88	1.03	0.02	0.66	1.94	3.15	132.20	
TLD	1.26	1.38	0.04	1.06	2.82	14.44	259.37	
Registrar	1.46	2.47	0.03	1.01	3.76	11.93	940.41	
	:							

Registrar

Response time per vantage point (I)

- Significant latency differences across vantage points
 - For the majority of RDAP services, response time is highly dependent on the location from where the query is performed

Queries executed from the same region have lower latencies

Response time per vantage point (II)

• ~250 RIPE Atlas probes selected based on:

ICANN

- Stability: only probes online 90 days prior to the measurement
- Location: maximum of 25 probes per MESSAGE** 11-region

Traceroutes to RDAP's service domain:

- ⊙ Average: 14.27 hops
- Max: 37 hops.

Response time vs response size

- Average response size around 6KB
- RDAP response size highly varies per operator:
 - Maximum response size:
 122 KB (registrar)
 - 95% of all responses under 10 KB

 No significant correlation between response size and response time

- No statistically significant differences were observed in terms of response time depending on the IP address type
- Average query latency:
 - IPv4: 1.07 sec
 - IPv6: 0.87 sec

Breakdown of HTTPS Transaction Timings

 RDAP latency can be broken down into several parts

- SSL handshake takes between
 20% to 40% of the response time
 - 40-80% of the time is spent in starting and actually transferring the RDAP response

	Time (sec)										
	Connect	Appconnect	Pretransfer	Starttransfer	Transfer						
RIR	0.13	0.32	0.00	0.20	0.06						
TLD	0.19	0.43	0.00	0.40	0.04						
Registrar	0.19	0.42	0.00	0.49	0.01						

Conclusions

- ➤ ~8 million RDAP queries were executed successfully
 - Average query response time: 1.02 sec
- Significant differences depending on the RDAP operator:
 - RIR's RDAP service had the fastest response time
- Source IP address type and response size did not significantly affect the response time
 - Query response size highly varies depending on the RDAP operator
 - Queries over IPv6 were responded slightly faster
- The geolocation from where the query is executed impacted the response time significantly
- ➤ The TLS handshake adds up to 20%-40% of the total response time

Thank You and Questions

Email: carlos.ganan@icann.org

