
Integrating .it RDAP Server with 

OpenID Connect through Keycloak:

experiences and expectations
Francesco Donini, Mario Loffredo, Maurizio Martinelli

IIT-CNR/Registro.it

10° ROW – Online, June 8th, 2021



• Is an open source identity and access manager

• Makes it easy to secure applications and services with little to no code

• Enables SSO

• Supports login with social networks (e.g. Google, Twitter, Facebook)

• Can authenticate users with existing OpenID Connect or SAML 2.0 IdPs

• Provides built-in support to sync to existing LDAP or Active Directory 
servers but you can create custom extensions for any user database 
(e.g. a relational db)

Keycloak



• Realm: a Keycloak space where you manage objects

• User: a user for the service to secure

• Role: a type or category of user

• Client: the service to secure

• A Realm can include more Clients and all the Users having the same

Roles with respect to the Clients

Keycloak – key concepts



• Keycloak supports fine-grained authorization policies by combining different 
access control mechanisms (ACM):

• Role-based: defines conditions for permissions where one or multiple roles 
are permitted to access an object;

• User-based: defines conditions for permissions where one or multiple users 
are permitted to access an object;

• Attribute-based: defines conditions for permissions based on an attribute 
obtained from the execution context or the current identity (through policy-
enforcement);

• Time-based: defines time restrictions on permissions.

Keycloak – access control



• When securing clients and services, you need to specify:

• the protocol (OpenID Connect – SAML)

• the software platform (Java or other)

Keycloak - adapters

OpenID Connect – Java SAML - Java

• Jboss EAP

• WildFly

• Fuse

• Tomcat

• Jetty 9

• Servlet Filter

• Spring Boot

• Spring Security

• Jboss EAP

• WildFly

• Tomcat

• Jetty



• realm: name of the realm;

• resource: the client-id of the application;

• auth-server-url: the base URL of the Keycloak

server;

• ssl-required: ensures that all communication to and 

from the Keycloak server is over HTTPS (allowed 

values: all, none, (default) external);

• use-resource-role-mappings: if set to true, the 

adapter will look inside the token for application level 

role mappings for the user. If false, it will look at the 

realm level for user role mappings (default: false);

• bearer-only: if set to true, the adapter will not 

attempt to authenticate users, but only verify bearer 

tokens (default: false);

• verify-token-audience: if set to true, then during 

authentication with the bearer token, the adapter will 

verify whether the token contains this client name 

(resource) as an audience (default: false).

Keycloak – realm configuration



• Supports OpenID

• Free

• Followed by a big community of developers

• Allows for delegating all the authentication and authorization aspects 

(e.g. forgotten password handling, tokens management)

• Supports multiple IdPs

Why Keycloak? (1)



• Offers a comprehensive web-based GUI to set up configurations

• Provides Admin REST API 

• Easily customizable and extensible

• Provides easy integration with WildFly and SpringBoot based

applications

• Supports many ACMs

Why Keycloak? (2)



• Keycloak (acting as an OpenID Provider)

• The .it RDAP server (acting as an OpenID Relying Party) 

• The .it RDAP client (acting as an OpenID End-User) 

RDAP-OpenID at .it



• General:

• same endpoints for protected and unprotected resources

• need for an ad-hoc web client to improve the user interaction with the server

• .it specific:

• Java-Wildfly based implementation;

• different server platforms managed through Docker (i.e. devel, public test, live)

• different request and response features according to the user profiles:

• anonymous

• authenticated: Registrar, Registry, other (e.g. authority)

.it RDAP OpenID – implementation constraints



• WildFly Adapter

• Realm configuration is included in standalone.xml

• Roles-Resources mapping is defined in web.xml

• No policy-enforcement

• No multi-realm

• Jar dependencies to access some security objects

• Servlet Filter Adapter

• Realm configuration and policy-enforcement is included in keycloak.json

• Roles-Resources mapping is defined in web.xml

• Multi-realm allowed through different keycloak.json files

• Jar dependencies

• SpringBoot Adapter

• Configuration is all included in a normal SpringBoot
configuration file:

• Realm configuration

• Roles-Resources mapping

• policy-enforcement

• Multi-realm

.it RDAP OpenID – Keycloak Java adapters



• WildFly Adapter:

• lowest implementation effort to integrate with Keycloak;

• installation made by a Dockerfile inside the server project;

• minimal configuration;

• set up of WildFly standalone.xml guided by platform-related

jboss-cli scripts.

.it RDAP OpenID – adapter selection



<subsystem xmlns="urn:jboss:domain:keycloak:1.1">

<secure-deployment name="rdap-server.war">

<realm>rdap</realm>

<resource>rdap-server</resource>

<auth-server-url>http://auth.pubtest.nic.it/auth/</auth-server-url>

<use-resource-role-mappings>true</use-resource-role-mappings>

<bearer-only>true</bearer-only>

<ssl-required>none</ssl-required>

<verify-token-audience>true</verify-token-audience>

</secure-deployment>

</subsystem>

.it RDAP OpenID – realm configuration example



• Created one ad-hoc realm: rdap

• Unable to use existing .it realms having different categories of users

• Request and response features based only on roles

• Four roles defined: ANONYMOUS, AUTH_REGISTRAR, 
AUTH_REGISTRY, AUTH_USER

• All endpoints are considered protected (every access is mediated by 
Keycloak);

• An anonymous user is authenticated through publicly known credentials.

.it RDAP OpenID – users vs. roles mapping



Roles Resources

ANONYMOUS Allowed to access /domain and /help

/domain: unpublic data are either redacted or 

not returned (WHOIS-like response)

/help: provides information about the allowed

features

AUTH_REGISTRAR Allowed to access every endpoint and every data 

about the sponsored objects are returned (inner

filter)

AUTH_REGISTRY Allowed to access every endpoint and every data 

are returned

AUTH_USER The same as AUTH_REGISTRY but for a limited

time and able to submit a fixed request

.it RDAP OpenID – roles vs. resources mapping



draft-ietf-regext-rdap-openid vs. Keycloak-RDAP-OpenID

RDAP Server draft-ietf-regext-rdap-openid

Keycloak-OpenID

RDAP Server

RDAP Server



draft-ietf-regext-rdap-openid Keycloak-RDAP-OpenID

• OpenID compliant

• Requires the RDAP server to manage:

• IdP discovery

• end user authorization

• tokens

• Requires rdap_openid_level_0 conformance:

• new requests and responses implementation

• handling specialized claims for RDAP:
• purpose

• dnt

• Requires additional effort to support clients with limited

user interfaces

• OpenID compliant

• Delegates Keycloak to manage:

• IdP discovery (as IdP itself or as a bridge to IdPs)

• end user authorization

• tokens

• No rdap_openid_level_0 conformance

• no futher requests and responses to implement

• specialized claims for RDAP:
• purpose: redundant because role-dependent

• dnt: not compliant with EU NIS (logging)

• Leverages Keycloak to support OTP

Access Token can be managed manually

draft-ietf-regext-rdap-openid vs. Keycloak-RDAP-OpenID



• Currently, ANONYMOUS, AUTH_REGISTRY and AUTH_REGISTRAR 
roles are supported

• To support AUTH_USER we need to use policy-enforcement to deal 
with more fine-grained ACMs:

changing the adapter and possible migration of the RDAP server from 
WildFly to SpringBoot;

implementing an additional service, interacting with Keycloak via Admin
REST API, to provide temporary and query-based credentials:

providing specific OpenID claims

Future activities



Thanks for your attention!

Q&A



Demo time


